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Purpose: Mathematical models combined with new imaging
technologies could improve clinical oncology studies. To
improve detection of therapeutic effect in patients with cancer,
we assessed volumetric measurement of target lesions to estimate
the rates of exponential tumor growth and regression as treat-
ment is administered.

Experimental Design: Two completed phase III trials were
studied (988 patients) of aflibercept or panitumumab added
to standard chemotherapy for advanced colorectal cancer. Ret-
rospectively, radiologists performed semiautomated measure-
ments of all metastatic lesions on CT images. Using exponential
growth modeling, tumor regression (d) and growth (g) rates
were estimated for each patient’s unidimensional and volumetric
measurements.

Results: Exponential growth modeling of volumetric measure-
ments detected different empiric mechanisms of effect for each

Introduction

For nearly 20 years, Response Evaluation Criteria in Solid Tumors
(RECIST) has been the international consensus, structured, standard-
ized method by which to evaluate new cancer therapeutics (1) in
clinical studies. RECIST was developed and has been demonstrated to
ensure robust, reproducible detection of treatment effects in patients
with solid tumors across numerous clinical investigation sites with
standard assessment methodology and technological resources, while
also allowing comparisons with historical trials assessed using similar
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drug: panitumumab marginally augmented the decay rate [tumor
half-life; d [IQR]: 36.5 days (56.3, 29.0)] of chemotherapy
[d: 44.5 days (67.2, 32.1), two-sided Wilcoxon P = 0.016], whereas
aflibercept more significantly slowed the growth rate [doubling
time; ¢ = 300.8 days (154.0, 572.3)] compared with chemotherapy
alone [g = 155.9 days (82.2, 347.0), P < 0.0001]. An association of g
with overall survival (OS) was observed. Simulating clinical trials
using volumetric or unidimensional tumor measurements, fewer
patients were required to detect a treatment effect using a volu-
metric measurement-based strategy (32-60 patients) than for uni-
dimensional measurement-based strategies (124-184 patients).

Conclusions: Combined tumor volume measurement and esti-
mation of tumor regression and growth rate has potential to
enhance assessment of treatment effects in clinical studies of
colorectal cancer that would not be achieved with conventional,
RECIST-based unidimensional measurements.

methods (2). Despite the identification of numerous potential short-
comings of RECIST, (3-6), no superior alternative method for clinical
trial analysis has been established (7).

CT scans are the most widely distributed and commonly used
technology for multicenter clinical trials that employ RECIST. Various
advances in CT image acquisition and analysis have also provided the
potential to improve evaluation of diverse treatments for cancer. For
example, with computer-aided segmentation algorithms, a radiologist
can quickly define the boundaries of individual target lesions and
efficiently obtain relatively precise volume measurements (8, 9). Such
software for volumetric measurement has been developed and tested
for about a decade. The methodology is scalable but, as a single
technological advance to provide better outcomes correlation, tumor
burden by volumetric measurement at the typical fixed time-points in
clinical trials has offered modest advantage to assess treatment effects
over the unidimensional measurements collected for RECIST-driven
metrics such as progression-free survival (10-13).

Computational modeling of changes in serially measured tumor
burden is well established as a method to assess treatment effects in
animal models (14). Various computational methods to compare
changes in tumor burden over time among treatment arms in human
clinical trials have been proposed as an alternative to RECIST-based
clinical trial metrics (15-18). Initial proposals for phase II trial designs
suggested the change in tumor burden from baseline to the first
assessment might be superior to RECIST-based objective response
rates or progression-free survival (PFS). However, thoughtful critiques
and sampling exercises suggested the simple conversion from the
categorical and time-to-event assessments of RECIST to comparison
of changes in the sum of the longest dimensions of all target lesions

AAC_R American Association
for Cancer Research’

AACRJournals.org | 6464

Downloaded from clincancerres.aacrjournals.org on February 14, 2021. © 2020 American Association for Cancer Research.


http://crossmark.crossref.org/dialog/?doi=10.1158/1078-0432.CCR-20-1493&domain=pdf&date_stamp=2020-11-24
http://crossmark.crossref.org/dialog/?doi=10.1158/1078-0432.CCR-20-1493&domain=pdf&date_stamp=2020-11-24
http://clincancerres.aacrjournals.org/

Published OnlineFirst September 28, 2020; DOI: 10.1158/1078-0432.CCR-20-1493

Translational Relevance

Response Evaluation Criteria in Solid Tumors (RECIST) is often
criticized, and new metrics based on methods of modeling the
longitudinal growth of solid tumors have been suggested but have
not been demonstrated superior to conventional RECIST metrics.
Similarly, digital imaging techniques such as volumetric measure-
ment of target lesions have been suggested to improve sensitivity
and specificity for changes in tumor burden due to treatment, but
the techniques have not been widely adopted for this purpose. In
this retrospective analysis of completed colorectal cancer clinical
trials, the largest to date of re-measurement of original CT images,
we found potentially important advantages of combining a model-
based metric with volumetric assessment of tumor burden. Our
findings suggest that comparison of treatments based on calcula-
tion of the tumor growth rate, g, using volume measures of tumor
directly on CT images achieves greater statistical power than using
conventional unidimensional measurements.

alone would not offer substantial improvements (19-22) in statistical
power or time-to-study-completion. In one of the largest examinations
to date, Mandrekar and colleagues (23) examined the relationships
among numerous RECIST-derived and continuous tumor burden
metrics among more than 8,000 patients with either breast, colorectal,
or lung cancer and overall survival (OS) captured in 13 clinical trials.
They found no significant superiority of more complex methods over a
simple trichotomous response metric at 24 weeks of treatment.
Notably, the strongest relationship among imaged tumor burden
metrics and OS was among patients with colorectal cancer. Without
evidence of significantly improving performance of human clinical
trials in solid tumors, volumetric measurement of tumor burden by CT
imaging, and computational modeling of human tumor growth have
gained interest but little traction in the clinical investigator
community.

We hypothesized that when new computational modeling techni-
ques of tumor growth inhibition are applied to better measurement of
tumor burden on CT imaging, the combination of these two technol-
ogies would achieve the expected improvements in statistical power.
As a combined strategy, tumor growth inhibition modeling and better
methods of tumor burden assessment on CT images should be
revisited. Global pharmaceutical companies have now effectively
incorporated tumor growth inhibition models to inform oncology
drug development decisions (24-26). Academic investigators have
developed new methodologies to infer treatment effects from conven-
tional imaging measurements (27-30). We have demonstrated that
while RECIST is effective at reducing the “noisy” elements of con-
ventionally measuring tumor burden and collecting data on clinical
trials, the unfiltered measurement variance reduces the effectiveness of
computational models (31). More recently, we demonstrated that
when computed growth rate (g) for human prostate cancer is estimated
from a biexponential model of serial quantitative measurement of
serum prostate-specific antigen (PSA) there is a strong association
between estimates of the rate of tumor growth, g, and OS (32). This
relationship supports use of treatment-related changes in g as a clinical
endpoint for early phase clinical trials to reduce the required sample
size to detect life-prolonging effects of cancer treatment in human
studies. But, to use g in this way for other solid tumors requires a
robust, serially measurable quantitative measure of tumor burden.
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CT Volume and Modeling to Detect Cancer Treatment Effects

Our research groups have joined the Foundation for NIH (FNIH)
Biomarkers Consortium project “Advanced metrics and modeling
with Volumetric CT for Precision Analysis of Clinical Trial Results
(Vol-PACT)” (33). We hypothesized that for solid tumors without a
robust serologic biomarker, computing metrics from measures derived
directly from original study CT images could enhance detection of
treatment effects. For this study we had access to CT images from
completed phase III clinical trials that supported regulatory agency
approval in colorectal cancer for the angiogenesis inhibitor, afliber-
cept, and the EGFR inhibitor, panitumumab. Notably these agents
were added to and compared with a backbone of chemotherapy
(panitumumab added to fluorouracil, folinic acid, oxaliplatin in
first-line therapy, aflibercerpt added to fluorouracil, folinic acid,
irinotecan in second-line therapy) and had modest impact on OS.
Here we demonstrate: (i) the rate of growth of colorectal cancer, g,
derived from CT images correlates well with OS, (ii) the biexponential
model implies different mechanisms of drug effect (the VEGF inhib-
itor delayed tumor growth whereas the EGFR inhibitor enhanced the
cytotoxic effects of chemotherapy), and (iii) the estimated statistical
power to detect treatment effects in a clinical trial of colorectal cancer is
enhanced to a greater extent when based on volumetric assessment of
tumor burden and changes in growth rate, on routinely collected CT
images, than when based on the RECIST-derived measurement of
single longest dimensions.

Materials and Methods

Clinical trials and patients

Clinical trial source data were obtained and original CT images were
subjected to standardized quality control procedures and analyzed
through the FNTH Vol-PACT project as described previously (33). To
support development of new phase II clinical trial study metrics and
candidate endpoints for solid tumors, each clinical trial dataset in the
Vol-PACT project was randomly divided into discovery/development
and validation sets. In this study we focused specifically on patients
from the CRC trials- “PRIME” (34) and “VELOUR” (35).

PRIME (34) was a randomized study of the EGFR inhibitor mAb
panitumumab added to standard-of-care fluorouracil, folinic acid,
oxaliplatin (FOLFOX4) in the first-line treatment of metastatic colo-
rectal cancer. The study randomly assigned treatment for 1,183
patients. The prespecified analysis stratified patients by tumor KRAS
codon 12 status and was performed on 93% of patients (1096), with 656
of these patients having tumors that did not bear a codon 12 mutation
and were considered “wild-type” (WT). For this WT stratum, the HR
for progression-free survival (PFS) was 0.80; 95% confidence interval
(CI), 0.66-0.97; P=0.02, favoring the panitumumab arm [median PFS
was 9.6 months (95% CI, 9.2-11.1 months) for panitumumab-FOL-
FOX4 and 8.0 months (95% CI, 7.5-9.3 months) for FOLFOX4].
Median OS in the panitumumab arm was 23.9 months (95% CI, 20.3-
28.3) and 19.7 months (95% CI, 17.6-22.6) for FOLFOX4 alone (HR =
0.83; 95% CI, 0.67-1.02; P = 0.07). CT imaging was performed
pretreatment and every 8 weeks until progression. Patients were
followed every 12 weeks for survival. In the original study, patients
in the KRAS WT stratum had median follow up 13.2 months (range, 0-
25.2 months) in the panitumumab arm and 12.5 months (range, 0-
24.7 months) in the FOLFOX4 arm. For the Vol-PACT project, 626 of
the original 656 WT patients had complete combined image and CRF
data. These subjects were randomly allocated 2:1 to development and
validation sets. For this investigation, we evaluated the 418 WT
patients in the development set.
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VELOUR was the registrational clinical trial of the VEGF-binding
recombinant protein aflibercept or placebo added to fluorouracil,
folinic acid, and irinotecan (FOLFIRI) in the second-line treatment
of CRC (35). The study randomized 1226 patients and revealed a
median improvement in OS for aflibercept (13.5 months) vs. placebo
(12.1 months); HR = 0.82; CI, 0.71 to 0.94; P = 0.0032. Aflibercept
also increased the progression-free survival (6.9 vs. 4.7 months; HR =
0.76; CI, 0.66 to 0.87; P < 0.0001) and the response rate 20% (CI, 16% to
23%) over placebo 11% (CI, 8.5% to 13.8%); P = 0.0001. CT imaging
was performed prior to initiation of treatment and approximately
every 6 weeks until disease progression. Patients were followed every
8 weeks after progression for survival. In the original trial, the reported
median follow-up time for survival was 22.3 months. Of the 1,226
patients initially randomized to a treatment arm, 126 did not have data
to pass Vol-PACT quality control. The remaining 1,140 with available
clinical treatment and imaging data were randomized 1:1 to develop-
ment/discovery and validation sets. In this investigation, we evaluated
the 570 patients assigned to the development set.

Images and analysis procedures

Both studies had protocol-specified centralized CT imaging collec-
tion. The electronic transfer of the clinical and imaging data, the
quality control procedures, import of images into the standard soft-
ware platform, and segmentation analyses of lesions were described
previously (33). Briefly, industry sponsor research teams recoded
individual subject data and corresponding CT image files with the
same subject identifier before transferring data and image files to the
consortium. CT images were stored in DICOM format and transferred
to the Columbia University Computational Image Analysis Lab
(CIAL).

Tumor burden for each individual patient was assessed by a team of
radiologists who were blinded to the associated clinical data using a
response assessment system built on open source software, the Weasis
imaging platform (8). Up to 10 lesions > 1 cm in diameter at baseline
and new lesions upon appearance were segmented and measured at
each scan time point. Measuring up to 10 lesions provided a better
estimation of overall tumor burden than using the RECIST 1.1 rule of
five maximum, and two per organ maximum. Semiautomated algo-
rithms developed for lung lesions, liver lesions and lymph nodes with a
contour modification tool were used. The contours were superimposed
on the original images, reviewed by a radiologist, and corrected if
deemed inaccurate by the reviewing radiologist. Once a lesion was
segmented, its single longest dimension and volume could be calcu-
lated automatically by computer. The unidimension was the longest
line length inside the segmented lesion (maximal diameter; in mm)
calculated on the axial image (x-y plane) where the lesion has the
largest area and volume was the total number of the voxels inside the
segmented lesion multiplied by the image resolutions along x-, y-, and
z-directions (voxel size; in mm®).

Tumor growth modeling and notation

The same modeling method applied to analysis of sum of unidi-
mensional measures of target lesions for renal cell carcinoma (36) and
PSA for prostate cancer (32) was applied to the tumor burden
assessment for patients with colorectal cancer. In addition to being
a familiar method to clinicians, this method had the most readily
available software package to apply to the dataset among published
quantitative tumor growth inhibition models. The quantitative assess-
ment for colorectal cancer was based on CT images for individual
patients with colorectal cancer using either total unidimensional and
volume measures. Conventionally, as per usual execution of RECIST-
based trials, we have excluded from nonlinear model-based analysis,
subjects with 2 or fewer CT imaging datasets, unless the difference in
tumor measurements is clearly informative (between the single on-
study and baseline image series is =20%, consistent with RECIST
progressive disease criteria; ref. 37). Total cases excluded from sub-
sequent modeling for this lack of informativeness is summarized
in Table 1 and specified by study arm in Supplementary Table SI.
Individual cases are depicted in Supplementary Fig. S1. For all subjects
with image collections meeting these criteria, the biexponential
regression-growth model estimates the tumor growth rate based
on the assumption that change in tumor quantity during therapy
results from two independent component processes: an exponential
decrease or regression, occurring at rate d, and a simultaneously
occurring exponential growth or regrowth of the tumor, occurring
at rate g. Consistent with prior evaluation and implementation of
this methodology (36, 38-41) in thousands of patients, individual
patient tumor burden trajectories by unidimensional and volumet-
ric assessments of tumor burden conformed to four basic patterns
related to the model:

(i) When the biexponential relationship best fits the data (super
majority of cases), the model is labeled gd, where f(t) is the tumor
quantity at time t in days, relative to initial tumor quantity, d is the rate
of regression or decay, and g is the rate of growth:

f(t) _ e—dt + e(gt)

(ii) For patients in whom there is a continuous decrease in tumor
burden from the start of treatment, the data are labeled dx, as the
growth rate, g, is eliminated:

f(t) = e

(iii) Similarly, d is eliminated when data show a continuous increase in
tumor burden from the start of treatment, and labeled as gx:

f(t) = e

(iv) The fourth model, contains an additional parameter, ¢, which
represents the proportion of tumor cells that undergo cell death due to

Table 1. Total subjects with data available for analysis by study arm.

Analyzed Analyzed
Excluded fit not fit
Study Treatment arms Measurement n (%) n (%) n (%)
VELOUR FOLFIRI/placebo vs. Unidimensional 94 (16.7) 445 (77) 31(6.3)
FOLFIRI/aflibercept Volumetric 65 (1.4) 470 (81.7) 35(6.9)
PRIME FOLFOX vs. Unidimensional 60 (16.3) 335 (77.3) 23 (6.4)
FOLFOX/panitumumab Volumetric 49 (1.7) 342 (80.4) 27 (7.9)
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therapy. Sometimes, this more complex model better fits the data than
gd and it is labeled as gd¢:

f(t) = ge™ + (1 — ¢)e® — 1

Using all CT imaging measurements for unidimensional and vol-
umetric assessments of tumor burden, the rates of tumor growth [g]
and regression [d] were calculated to solve these four nonlinear least
squares problems with the TUMGr package for R (32). The “initial
tumor quantity” or “baseline tumor burden” was based on the inves-
tigator-determined CT imaging assessment consistent with the study
protocol for each clinical trial. Also consistent with the protocols and
conventional study execution, this session was almost always between
days —28 to —1 of initial on-study treatment. Collected most closely of
all measurements to study day 0, this measurement was assumed to be
the effective measurement on the day of initial treatment, without
adjustments for the model. For unidimensional measurements the
units were in mm, and for volume measurements in mm?’. For
purposes of this modeling analysis of CT imaging-based lesions, we
assumed the same measurement error for all diameters and volumetric
assessments. Time was measured in days. Among models where all
parameters are significant predictors (P < 0.10), the model which
minimizes the Akaike Information Criterion is the selected model for a
given patient. Typically, approximately 10% of patients who have
sufficient imaging series and measurements have tumor burden data
that do not fit any of the model structures well (Table 1, “Analyzed not
fit”), that is, where no parameter predicts tumor burden with P < 0.10.
In this study 6.3%-7.9% of patients per study arm had tumor burden
data that did not fit the models. These subjects were excluded from
subsequent survival and power analyses.

Survival analysis

To examine the association between g and OS, a landmark
survival analysis was performed for each trial dataset and measure-
ment type (unidimensional and volumetric) using a landmark time
defined as the point where 75% of the measurement data had been
collected for each trial, which were 10.1 and 5.9 months for PRIME
and VELOUR trial sets, respectively. To prevent guarantee-time and
immortal-time biases, only patients who lived to the landmark time
point were included in the analysis. The log of the growth rate
estimates obtained using measurement data prior to the landmark
time was used as a single continuous predictor in the analyses. For
visualization purposes, survival curves were depicted by tertile log g.
The same approach was enlisted to evaluate the association between
d and OS.

Power simulations

Power simulations for comparison of growth rates between exper-
imental (aflibercept or panitumumab) and control (placebo) arms
were performed for the volume and unidimensional data using two
different methods: (i) a randomized study case example with pro-
spective enrollment and assignment of patients to a treatment or
control arm, and (ii) a single/historical comparator case example,
where all patients would receive the investigational treatment and the
difference in g would be compared with g for a similar population that
has received the comparator treatment. In the randomized study case
example for the given N, 1,000 random samples with replacement of
size N were generated from the growth rates of the experimental and
the control arm. For each of the 1,000 samples, a two-sided Wilcoxon
test (null hypothesis: true location shift is equal to 0, and alternative
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hypothesis: true location shift is not equal to 0) was performed against
the control arm growth rates, and the test statistic P values were
recorded. We chose Wilcoxon test for this comparison because of its
well-known robustness against violations of assumptions involved
with parametric methods like the ¢ test on the original or log-
transformed data. While there is a loss of statistical power associated
with this choice, we found it important that our ability to control type I
Error was not strongly dependent on the distribution of the estimated
growth parameters. Power was then computed as the proportion of the
1,000 test statistics that were significant (P < 0.05). These steps were
repeated for various values of N and the results were plotted (power ~
N), noting the N value at which a value of 0.80 for power was reached.
For the single-arm/historical comparator simulations, for the given N,
1,000 random samples with replacement were generated from the
experimental arm of size N. The analyses plotted in Fig. 4 assumed a
logo g value of —4 for all patients in whom the data best fit the dx
model (where g cannot be estimated, because OS between the best g
responses and the dx cases is the same and this replacement value
preempts removal of these patients from the study (as would be desired
in a prospective phase II investigation). To determine the associated
false-positive detection rate, we performed similar analyses but now
resampled cohorts 20-100 patients each from the control arms of the
PRIME and VELOUR studies and compared to the full control arm
sample for 1,000 tests each and determined the frequency at which the
study arm would be declared to improve g with P < 0.05.

Results

For these analyses, data were available from 988 patients with a
diagnosis of colorectal cancer, 570 from VELOUR (phase III trial in
second line treatment with FOLFIRI and placebo or FOLFIRI and
aflibercept to patients whose disease had progressed on an oxali-
platin-based regimen), and 418 patients in the no-codon-12 KRAS
mutation (WT) stratum of the PRIME trial (randomized phase III
trial of first-line standard-of-care FOLFOX vs. FOLFOX and
panitumumab).

All subject data were received from the set defined for the original
study intention-to-treat analysis. The nonlinear analytical models best
fit individual patient datasets with an available baseline scan and three
or more tumor assessment time-points (Fig. 1). Models cannot be
applied well to sets with fewer than three assessments. This none-
valuable fraction constituted 16%-17% of each of the trial datasets
(Table 1). Use of volumetric measurement improved the evaluable
fraction in both of the trials. Detailed evaluation of these exclusions of
data from subsequent analysis (Supplementary Table S1) revealed no
systematic differences among studies or treatment arms. The largest
difference was between the placebo and aflibercept arms of VELOUR
where the rate at which only two CT image series were available with <
20% change in measured tumor burden among subjects in the placebo
arm (12%) was twice the rate of subjects in the aflibercept arm (6%).
When volumetric measures rather than unidimensional measures
were employed, the rates of exclusion decreased by roughly half
(5% for the placebo arm and 3% for aflibercept).

Among the included cases, the individual patient data fits of the log
ratio of tumor burden at each on-treatment time-point to baseline
tumor burden over the course of study observations were directly
inspected (Fig. 1) and fit one of the four model types: gd, dx, gx, and
gde. A consistent, but small, fraction of cases (5.9%-8.6%) did not meet
minimum criteria for model fits and varied with study arm and
whether unidimensional or volumetric assessments of tumor burden
were employed (Supplementary Table S1).
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Figure 1.

Examples of curve fits. Shown are the observed radiographic values as red circles, and the best curve fit as a blue line. Note that the line is not drawn through the
points. The shape of the line is described by the value of g and of d that is estimated from an analysis of the data. Each individual example is annotated with the
equation that was used to fit the data. Curve fits for all patients analyzed can be found in Supplementary Fig. S1.

The estimates of g were lower in patients enrolled in the experi-
mental arm of each trial, with greater differences in the VELOUR trial.
As summarized in Table 2 and shown graphically in Fig. 2B and D, the
magnitude of the statistical difference was greater when comparing the
volumetric data to the unidimensional data. This observation under-
scored the added value of volumetric measurements over unidimen-
sional measures of tumor burden. This factor has important implica-
tions for design of future model-based early-phase clinical trials for
colorectal cancer.

For the decay/regression constant, d, the analysis showed aflibercept
to have no effect, but in PRIME a statistically significant difference was
discernible with d higher with the addition of panitumumab, as shown
in Table 2 and Supplementary Fig. S2. This qualitatively different effect
of aflibercept (primarily on g) and panitumumab (relatively more on d)
implies that the different mechanisms of the drugs have different bases
for augmenting chemotherapy effects on colorectal cancer. Panitu-
mumab increases the initial reduction in tumor burden with marginal
impact on the intrinsic growth rate of the tumor. In contrast, afli-
bercept has minimal impact on the chemotherapy-induced reduction
in tumor burden and primarily slows the intrinsic growth rate of the
tumor.

6468 Clin Cancer Res; 26(24) December 15, 2020

We have previously shown that g predicts OS in renal cell carci-
noma (36) and prostate cancer (32) and in this analysis we have
confirmed this relationship for colorectal cancer. Figure 3 shows the
data from both VELOUR and PRIME trials landmarked at the point
when 75% of the data had been captured. Three curves depict tertiles of
the values for g with the fourth curve representing the OS probabilities
of the patients whose data was best fit by the dx model. These patients
had no estimable g value, as this was either too small to estimate or
nonexistent. The curve for these patients tracks closely with the curve
for the best tertile of g values, consistent with a good OS probability for
both groups. Notably, we confirmed for colorectal cancer in VELOUR
and PRIME (Supplementary Fig. S3) our prior observations in renal
cell carcinoma (36) and prostate cancer (41), that d does not correlate
with OS (Supplementary Fig. S4).

Our estimates of changes in intrinsic growth, g, derived from
volumetric measures of CT-imaged lesions in the VELOUR trial
suggested potentially important increases in statistical power for
testing new treatments in colorectal cancer. The rationale is as follows:
(i) g has strong correlations with OS, (ii) aflibercept had measurable
(although marginal) effects on OS, (iii) the difference in g between the
placebo and aflibercept arms was more evident based on volumetric
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Table 2. Comparison of parameter estimates by study arm with unidimensional versus volumetric measurement of target lesions on

CT image series.

d/half-life (days)

VELOUR
Analysis Treatment N Mean SD Min Q1 Median Q3 Max
Unidimensional FOLFIRI + placebo 144 247.7 390.6 27.2 99.0 145.0 2227 3,758.3
FOLFIRI + aflibercept 197 260.7 573.7 216 84.3 139.6 229.3 6,175.4
Volumetric FOLFIRI + placebo 141 101.6 13.4 121 44.4 66.2 120.7 862.9
FOLFIRI + aflibercept 189 94.9 102.3 13.2 433 712 10.1 1,095.8
PRIME
Analysis Treatment N Mean SD Min Q1 Median Q3 Max
Unidimensional FOLFOX 148 152.5 188.7 21.0 72.4 107.4 155.4 1,837.8
FOLFOX + panitumumab 150 1211 ms 13.1 64.1 87.9 128.3 786.8
Volumetric FOLFOX 140 66.7 106.2 12.6 321 445 67.2 1,073.0
FOLFOX + panitumumab 151 63.7 160.7 n.4 29.0 36.5 56.3 1,948.0
g/doubling time (days)
VELOUR
Analysis Treatment N Mean SD Min Q1 Median Q3 Max
Unidimensional FOLFIRI + placebo 198 743.0 49351 56.4 169.1 269.9 426.9 69,637.2
FOLFIRI + aflibercept 190 413.8 347.5 59.8 219.4 31.8 505.1 3,380.1
Volumetric FOLFIRI + placebo 204 589.5 3503.0 27.7 82.2 155.9 347.0 48,770.5
FOLFIRI + aflibercept 195 527.4 853.9 20.9 154.0 300.8 5723 9,505.7
PRIME
Analysis Treatment N Mean SD Min Q1 Median Q3 Max
Unidimensional FOLFOX 140 904.0 1,552.9 28.0 250.1 434, 1,01.3 1,729.0
FOLFOX + panitumumab 136 1,173.8 2,250.8 60.0 336.9 591.0 1,025.6 16,914.9
Volumetric FOLFOX 130 3,898.5 17,500.4 15.4 177.4 606.6 1,340.5 177,734.3
FOLFOX + panitumumab 123 3,571.4 8,294.6 23.2 305.8 871.0 2,207.8 46,081.3

measures of tumor burden on CT than with unidimensional measures.
We therefore explored the potential statistical power for an investi-
gation based on detection of a magnitude of change in g that would

clearly be suggestive of an improvement in OS.

We performed resampling analyses to determine the sample size
required (Fig. 4) to detect the effects of the modeled treatment in

Figure 2.

>

Dot-plots of data in Table 2 comparing
the distribution of g values in the two

clinical trials derived from unidimensional
[PRIME (A) and VELOUR (B)] or volumet-
ric measures [PRIME (C) and VELOUR
(D)]. In the PRIME trial, the difference was
small magnitude and of marginal signifi-
cance. In VELOUR a statistically significant

Unidimensional

difference was observed and the signifi-
cance of this difference was amplified
when based on the volumetric data.
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hypothetical phase II clinical trials based on growth modeling of tumor
burden for patients in both arms of the trials with unidimensional
versus volumetric measurements of tumor burden on CT images. We

conceived two divergent study designs. In Fig. 4A and B, we evaluated
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Figure 3.

Kaplan-Meier plots demonstrating the value of the growth rate constant, g, as a biomarker for overall survival. The predictive value was assessed by conducting a
landmark analysis. Because data are from one first-line and one second-line trial the time at which to landmark the data was chosen as the time at which 75% of the
data had been collected, rather than an arbitrary time in months. This was at 10.1 months for PRIME and 5.9 months for VELOUR. For this analysis, data from both
VELOUR and PRIME were pooled together to demonstrate the value of g in this respect is indifferent to the trial from which it was gathered, and in this case to whether
the trial was being conducted as first- or second-line therapy for metastatic colorectal cancer. The tertiles are of the patient data that had a calculable g within the
landmark constraints and for which there was either a known OS value or evidence of when they were still alive allowing for censoring. The three tertiles have median
OS values (95% Cl) of 20 (17.7-27.6), 10.4 (8.8-13.9), and 6.1 (4.9-8.1) months, respectively, for those with the slowest g values, intermediate g values, and fastest
g values from right to left, respectively. The fourth curve is that for patients whose data was best fit by the dx equation and in whom a g could not be calculated. Not
surprisingly, these patients whose tumor either was not growing or growing very slowly have an OS (95% Cl) 18 (15.5-24.3) months, comparable with those of the

tertile with the lowest (slowest) g values.

gin aprospective, 1:1 randomized clinical trial. In a prospective study,
we could not, a priori, identify patients whose patterns best fit the dx
model, and so we substituted the same decrease in g, log;o -4 as
typically observed for the best tertile of patients, for the dx patients. To
estimate the corresponding difference in g with 80% power in a one-
sided test with 0. of 0.05 a conventional unidimensional-measurement-
based study would require approximately 184 patients to detect the
change in g In contrast, the same study performed with volume
measurements is predicted to require significantly fewer patients,
approximately 60. The enhanced precision of tumor burden estimates
over time could justify an alternative, single-arm trial-benchmarking
approach where investigators could enlist a recent historical control
arm to serve as comparator in a single-arm study of a new agent added
to standard therapy (Fig. 4C and D). In this study design, (Fig. 4C)
enlisting unidimensional measurement-based tumor burden in the
growth model leads to a trial with 124 patients, but with volumetric
measures, the same study could require as few as 32 patients to detect
the addition of aflibercept as having a promising effect on colorectal
cancer. Notably, in PRIME, panitumumab had minimal effects on g
and so regardless of whether unidimensional or volumetric measure-
ments are employed, the hypothetical phase II trials would require
substantially more patients (Fig. 4B and D). In any of these cases, the
spurious rate of detection of differences is small. We performed
simulations with random sampling from each study control arm

6470 Clin Cancer Res; 26(24) December 15, 2020

compared with itself in cohorts of size 20-100 patients. For the
FOLFOX arm of the PRIME trial, the rate of identifying improve-
ment in g (P < 0.05) for the sampled cohort was 0.03, and for the
FOLFIRI arm in the VELOUR trial the rate was 0.02. The rates were
the same whether unidimensional or volumetric measurements
were employed.

Discussion

To accelerate improvements in study of cancer therapies in humans,
combinations of new technologies could be more effective than the
individual processes. We evaluated the incorporation of direct mea-
surements of tumor burden from CT images from nearly 1,000 patients
enrolled in phase III clinical trials into a biexponential model of tumor
growth inhibition. In this case, volumetric assessment improved
statistical power to detect beneficial treatment effects over unidimen-
sional measures. In addition, the direct measurement of tumor burden
on CT images combined with biexponential modeling revealed differ-
ences in the effects of target-specific therapeutic proteins added to
chemotherapy.

Increasingly, tumor growth inhibition modeling has become rec-
ognized as a powerful method to forecast outcomes, inform cancer
drug development, and improve understanding of tumor dynamics in
human studies (24, 26, 42, 43) However, modeling methods applied to
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CT Volume and Modeling to Detect Cancer Treatment Effects
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Power simulation results for detection of drug effect on g with unidimensional versus volumetric methods of CT measurement by resampling data from (VELOUR trial
with experimental aflibercept; A and €) and (PRIME trial with experimental panitumumab; B and D). Simulations entailed use of concurrent control arms of equivalent
size (A and B) or consideration of arger, comparable historical control arms of larger size for benchmarking a single-arm study (C and D).

human subject CT imaging data derived from case report forms
have not been widely accepted. In part, this is because metrics
derived from imaging case report form-based methods of contin-
uous measurement of tumor burden have not proved superior to
RECIST as candidate endpoints for clinical trials. We have previ-
ously demonstrated that a strength of using categorical time-to-
event metrics like progression-free survival based on RECIST
measurements is that these assessments are robust to interobserver
variability in measurement and other sources of “noise” in captur-
ing tumor treatment effects on tumor burden. Simultaneously, we
demonstrated that computational modeling of these unidimension-
al CT image measurement data can lead to error propagation and
poor performance of a model in reflecting the effects of treat-
ment (31). We also have demonstrated that with segmentation
algorithm-based measurement of tumor volume directly on CT
images, the precision of measurement relative to the changes in
tumor size is superior to unidimensional measurements in colo-
rectal cancer (9). Our resampling analysis of the VELOUR trial here
suggests that the combination of improved precision of volume
measurement and computational analysis of tumor growth and
decay offers substantial potential to reduce sample sizes for phase II
solid tumor clinical trials.

For volume measurement combined with biexponential modeling,
our findings suggest basic mechanistic or biomarker effects could be
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better detected in early-phase oncology clinical trials or small retro-
spective analyses. In this dataset we observed that the anti-EGFR mAb
panitumumab, when added to first-line chemotherapy causes a small
but measurable increase in the regression rate of colorectal cancer in
patients without a KRAS codon 12/13 mutation, with a marginally
detectable effect on the growth rate of the disease. Meanwhile, afli-
bercept had no detected effects on the regression rate but a larger effect
on the intrinsic growth rate that was more readily detected with use of
volume measures of tumor burden.

For this initial effort at modeling tumor burden measures directly
from CT images, sponsors provided images and data from older
clinical trials. Effects of the investigational agents were modest.
Disappointingly, currently recognized valid prognostic and predictive
covariates such as the side of origin of colorectal cancer were not
collected in the original clinical trial databases. For PRIME and
panitumumab knowledge of somatic mutation markers of EGFR
inhibitor resistance has evolved since completion of the trial. For
example, a follow-up analysis of available tissue from the trial revealed
approximately 17% of patients in this “WT” cohort to have tumors
bearing other-site KRAS, BRAF, or NRAS mutations which caused
a similar degree of primary resistance to panitumumab as the codon
12/13 KRAS mutations (44). These data were generated after the
completion of the original clinical trial and so were not available for
incorporation into this analysis. Since then, additional somatic
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mutations in other genes conferring resistance to EGFR inhibition
have been described (45). The presence of primary right or left-side
colon tumors was not determined in the original PRIME trial dataset,
but an independent team conducted a retrospective chart analysis
specific for the WT patient population (46). Meta-analyses of other
trials (47) and including PRIME (48) consistently detect a predictive
effect of tumor-sidedness on anti-EGFR therapy. The method of
assessment of d and g as we’ve described would offer a means to
detect objective differences in regression or growth rate by side of
primary tumor and provide a mechanistic validation of the effect of
EGFR antibodies on survival by analysis of a subset of CT images from
a study of anti-EGFR therapy added to colorectal cancer. The larger
VoIPACT project has restricted 1/3 of the available data from PRIME
(and 1/2 from VELOUR) for future validation studies, and after
completion of specified pan-trial analyses in progress, we ultimately
could pursue this analysis.

A shortcoming to this approach to detecting treatment effects is
that not all enrolled patients will be evaluable. Rather than consider
intention-to-treat, a study based on these methods would have to
focus on patients who are informative- have measurable target
lesions that can be identified on the baseline images and serially
measured on at least two additional CT scans. The patients would
need to have remained on assigned treatment over that interval and
the measurement data would have to then fit the model employed
here. Across VELOUR and PRIME by our analysis, approximately
15%-20% of patients were not informative and therefore excluded
from the analysis. Therefore, our estimates of sample size for
volume measurement-based trials described above for 32-60
patients with informative data would require actual initial accrual
of 40-80 patients. This also presents challenges to using the
combination of volume measurements and biexponential-model-
ing-based metrics as the basis for a new prospective clinical trial
endpoint or for monitoring and making treatment-decisions on
individual patients. However, to discern important differences in
treatment effects among small groups of patients without objective
responses, our study suggests there is potential for improved
statistical power to explore for exposure/response and biomark-
er-based effects. New conditional survival model methods might
also benefit from incorporation of volumetric assessments of tumor
burden (30). Other published methods to model these data such as
with the nonlinear mixed-effects approach could reduce some bias
in estimates of “d” and “g” and possibly further enhance detection of
treatment effects. Also, the use of newer machine-learning-based
techniques is compelling. A future goal for VolPACT is to facilitate
use of these alternative approaches.

To our knowledge, this is the largest study to date of tumor volume
measurements directly from CT images in clinical trials. This multi-
institutional effort reflects advances in collaborative operations among
imagers, computational scientists, and clinicians that should facilitate
more powerful investigations of new cancer treatments and biomar-
kers in subsets of patients through the combined efforts of investiga-
tors with complementary methodology and expertise. Our findings
suggest that direct measurement of tumor burden from CT images,
more so with volume than unidimensional measures leads to capacity
to detect treatment effects that are associated with OS in dozens rather
than hundreds of patients. This Foundation for the NIH Biomarkers
Consortium VolPACT project has generated a repository of original
clinical trial data and the CT image files to support intensive assess-
ment of alternative strategies. The findings in this study suggest that
the combination of direct measurement of lesions from images as a

6472 Clin Cancer Res; 26(24) December 15, 2020

reflection of tumor burden, combined with growth modeling could be
an important advance over modeling of conventional RECIST-based
unidimensional target lesions alone.

Disclosure of Potential Conflicts of Interest

M.L. Maitland reports a contract from Foundation for the NIH (/contract) and
grants from NCI during the conduct of the study, and M.L. Maitland’s spouse is a
cardiologist/clinical epidemiologist who is routinely consulted by biotechnology
and pharmaceutical companies on development of new treatments for pulmo-
nary hypertension and right ventricular heart failure; during the past three years,
the only sponsor with overlapping interests between her unrelated work and this
manuscript is Merck, Sharp, and Dohme. L.H. Schwartz reports grants from
Merck (member image endpoint committee), personal fees from Regeneron
(data safety and endpoint committee member), and personal fees from Boeh-
ringer (data safety and endpoint committee member) outside the submitted
work. G.R. Oxnard reports personal fees and other from Foundation Medicine
(employment) outside the submitted work. No potential conflicts of interest were
disclosed by the other authors..

Authors’ Contributions

M.L. Maitland: Conceptualization, resources, data curation, supervision,
funding acquisition, validation, investigation, methodology, writing-original draft,
project administration, writing-review and editing. J. Wilkerson: Conceptualization,
formal analysis, investigation, methodology, writing-original draft. S. Karovic:
Data curation, writing-original draft, writing-review and editing. B. Zhao:
Conceptualization, resources, data curation, formal analysis, methodology, project
administration, writing-review and editing. J. Flynn: Data curation, formal analysis,
methodology, writing-original draft. M. Zhou: Data curation, formal analysis,
validation, writing-review and editing. P. Hilden: Data curation, formal analysis.
F.S. Ahmed: Methodology, writing-review and editing. L. Dercle: Methodology,
writing-review and editing. C.S. Moskowitz: Conceptualization, data curation,
supervision, validation, methodology, project administration, writing-review and
editing. Y. Tang: Conceptualization, data curation, project administration,
writing-review and editing. D.E. Connors: Conceptualization, resources, funding
acquisition, project administration, writing-review and editing. S.J. Adam:
Conceptualization, resources, data curation, supervision, funding acquisition,
project administration, writing-review and editing. G. Kelloff: Conceptualization,
resources, supervision, funding acquisition, writing-review and editingA M. Gonen:
Conceptualization, resources, formal analysis, supervision, validation, methodology,
project administration, writing-review and editing. T. Fojo: Conceptualization,
resources, data curation, software, formal analysis, supervision, methodology,
writing-original draft, project administration. L.H. Schwartz: Conceptualization,
resources, data curation, formal analysis, supervision, methodology, project
administration, writing-review and editing. G.R. Oxnard: Conceptualization,
resources, supervision, funding acquisition, methodology, writing-original draft,
project administration.

Acknowledgments

Scientific and financial support for the Foundation for the National Insti-
tutes of Health Biomarkers Consortium project Vol-PACT (Advanced Metrics
and Modeling with Volumetric Computed Tomography for Precision Analysis
of Clinical Trial Results) was provided by: Amgen; Boehringer Ingelheim;
Merck KGaA, Darmstadt, Germany; Genentech; Merck & Co., Inc.; Regeneron
Pharmaceuticals; and Takeda Pharmaceutical Company. In-kind donations
of phase III trial data to support this specific study were provided to
Foundation for the National Institutes of Health by Amgen and Sanofi.
Additional support was provided by: NIH R01-CA194783 (M.L. Maitland,
S. Karovic, B. Zhao, L.H. Schwartz), 1U01-CA225431 (to B. Zhao and L.H.
Schwartz), P30 CA008748 (J. Flynn, C.S. Moskowitz, M. Gonen).

The costs of publication of this article were defrayed in part by the
payment of page charges. This article must therefore be hereby marked
advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate
this fact.

Received April 30, 2020; revised August 2, 2020; accepted September 23, 2020;
published first September 28, 2020.

CLINICAL CANCER RESEARCH

Downloaded from clincancerres.aacrjournals.org on February 14, 2021. © 2020 American Association for Cancer Research.


http://clincancerres.aacrjournals.org/

Published OnlineFirst September 28, 2020; DOI: 10.1158/1078-0432.CCR-20-1493

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Litiere S, Isaac G, De Vries EGE, Bogaerts J, Chen A, Dancey J, et al. RECIST
1.1 for response evaluation apply not only to chemotherapy-treated patients
but also to targeted cancer agents: a pooled database analysis. ] Clin Oncol
2019;37:1102-10.

Oxnard GR, Morris MJ, Hodi FS, Baker LH, Kris MG, Venook AP, et al. When
progressive disease does not mean treatment failure: reconsidering the criteria
for progression. ] Natl Cancer Inst 2012;104:1534-41.

Ratain M]J, Eckhardt SG. Phase II studies of modern drugs directed against new
targets: if you are fazed, too, then resist RECIST. J Clin Oncol 2004;22:4442-5.
Sharma MR, Maitland ML, Ratain MJ. RECIST: no longer the sharpest tool in the
oncology clinical trials toolbox—point. Cancer Res 2012;72:5145-9.

Benjamin RS, Choi H, Macapinlac HA, Burgess MA, Patel SR, Chen LL, et al. We
should desist using RECIST, at least in GIST. J Clin Oncol 2007;25:1760-4.
Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbe C, et al. Guidelines for
the evaluation of immune therapy activity in solid tumors: immune-related
response criteria. Clin Cancer Res 2009;15:7412-20.

Fojo AT, Noonan A. Why RECIST works and why it should stay-counterpoint.
Cancer Res 2012;72:5151-7.

Yang H, Schwartz LH, Zhao B. A response assessment platform for development
and validation of imaging biomarkers in oncology. Tomography 2016;2:406-10.
Zhao B, Lee SM, Lee HJ, Tan Y, Qi J, Persigehl T, et al. Variability in assessing
treatment response: metastatic colorectal cancer as a paradigm. Clin Cancer Res
2014;20:3560-8.

Dicken V, Bornemann L, Moltz JH, Peitgen HO, Zaim S, Scheuring U. Com-
parison of volumetric and linear serial CT assessments of lung metastases in renal
cell carcinoma patients in a clinical phase ITB study. Acad Radiol 2015;22:619-25.
Mozley PD, Bendtsen C, Zhao B, Schwartz LH, Thorn M, Rong Y, et al.
Measurement of tumor volumes improves RECIST-based response assessments
in advanced lung cancer. Transl Oncol 2012;5:19-25.

Mozley PD, Schwartz LH, Bendtsen C, Zhao B, Petrick N, Buckler AJ. Change in
lung tumor volume as a biomarker of treatment response: a critical review of the
evidence. Ann Oncol 2010;21:1751-5.

Wulff AM, Fabel M, Freitag-Wolf S, Tepper M, Knabe HM, Schafer JP, et al.
Volumetric response classification in metastatic solid tumors on MSCT: initial
results in a whole-body setting. Eur ] Radiol 2013;82:e567-73.

Looney WB, Trefil JS, Schaffner JG, Kovacs CJ, Hopkins HA. Solid tumor models
for the assessment of different treatment modalities: systematics of response to
radiotherapy and chemotherapy. Proc Natl Acad Sci U S A 1976;73:818-22.
Lavin PT. An alternative model for the evaluation of antitumor activity.
Cancer Clin Trials 1981;4:451-7.

Karrison TG, Maitland ML, Stadler WM, Ratain MJ. Design of phase II cancer
trials using a continuous endpoint of change in tumor size: application to a study
of sorafenib and erlotinib in non small-cell lung cancer. ] Natl Cancer Inst 2007;
99:1455-61.

Claret L, Girard P, Hoff PM, Van Cutsem E, Zuideveld KP, Jorga K, et al. Model-
based prediction of phase III overall survival in colorectal cancer on the basis of
phase II tumor dynamics. J Clin Oncol 2009;27:4103-8.

Wang Y, Sung C, Dartois C, Ramchandani R, Booth BP, Rock E, et al. Elucidation
of relationship between tumor size and survival in non-small-cell lung cancer
patients can aid early decision making in clinical drug development.
Clin Pharmacol Ther 2009;86:167-74.

Rubinstein LV, Dancey JE, Korn EL, Smith MA, Wright JJ. Early average change
in tumor size in a phase 2 trial: efficient endpoint or false promise? ] Natl Cancer
Inst 2007;99:1422-3.

Fridlyand J, Kaiser LD, Fyfe G. Analysis of tumor burden versus progression-free
survival for Phase II decision making. Contemp Clin Trials 2011;32:446-52.
An MW, Dong X, Meyers J, Han Y, Grothey A, Bogaerts J, et al. Evaluating
continuous tumor measurement-based metrics as phase II endpoints for pre-
dicting overall survival. ] Natl Cancer Inst 2015;107:djv239.

Kaiser LD. Tumor burden modeling versus progression-free survival for phase I
decision making. Clin Cancer Res 2013;19:314-9.

Mandrekar SJ, An MW, Meyers ], Grothey A, Bogaerts J, Sargent DJ. Evaluation
of alternate categorical tumor metrics and cut points for response categorization
using the RECIST 1.1 data warehouse. ] Clin Oncol 2014;32:841-50.
Chatterjee MS, Elassaiss-Schaap ], Lindauer A, Turner DC, Sostelly A, Fresh-
water T, et al. Population pharmacokinetic/pharmacodynamic modeling of
tumor size dynamics in pembrolizumab-treated advanced melanoma.
CPT Pharmacometrics Syst Pharmacol 2017;6:29-39.

AACRJournals.org

Downloaded from clincancerres.aacrjournals.org on February 14, 2021. © 2020 American Association for Cancer Research.

25.

26.

27.

28.

29.

30.

31

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

CT Volume and Modeling to Detect Cancer Treatment Effects

Chigutsa E, Long AJ, Wallin JE. Exposure-response analysis of necitumumab
efficacy in squamous non-small cell lung cancer patients. CPT Pharmacometrics
Syst Pharmacol 2017;6:560-8.

Claret L, Jin JY, Ferte C, Winter H, Girish S, Stroh M, et al. A model of overall
survival predicts treatment outcomes with atezolizumab versus chemotherapy in
non-small cell lung cancer based on early tumor kinetics. Clin Cancer Res 2018;
24:3292-8.

Ferte C, Fernandez M, Hollebecque A, Koscielny S, Levy A, Massard C, et al.
Tumor growth rate is an early indicator of antitumor drug activity in phase I
clinical trials. Clin Cancer Res 2014;20:246-52.

Champiat S, Dercle L, Ammari S, Massard C, Hollebecque A, Postel-Vinay S,
et al. Hyperprogressive disease is a new pattern of progression in cancer patients
treated by anti-PD-1/PD-L1. Clin Cancer Res 2017;23:1920-8.

Rayfield CA, Grady F, De Leon G, Rockne R, Carrasco E, Jackson P, et al. Distinct
phenotypic clusters of glioblastoma growth and response kinetics predict
survival. JCO Clin Cancer Inform 2018;2:1-14.

Tardivon C, Desmee S, Kerioui M, Bruno R, Wu B, Mentre F, et al. Association
between tumor size kinetics and survival in patients with urothelial carcinoma
treated with atezolizumab: implication for patient follow-up. Clin Pharmacol
Ther 2019;106:810-20.

Li CH, Bies RR, Wang Y, Sharma MR, Karovic S, Werk L, et al. Comparative
effects of CT imaging measurement on RECIST end points and tumor growth
kinetics modeling. Clin Transl Sci 2016;9:43-50.

Wilkerson J, Abdallah K, Hugh-Jones C, Curt G, Rothenberg M, Simantov R,
et al. Estimation of tumour regression and growth rates during treatment in
patients with advanced prostate cancer: a retrospective analysis. Lancet Oncol
2017;18:143-54.

Dercle L, Connors DE, Tang Y, Adam SJ, Gonen M, Hilden P, et al. Vol-PACT: a
foundation for the NIH public-private partnership that supports sharing of
clinical trial data for the development of improved imaging biomarkers in
oncology. JCO Clin Cancer Inform 2018;2:1-12.

Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, et al.
Randomized, phase III trial of panitumumab with infusional fluorouracil,
leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line
treatment in patients with previously untreated metastatic colorectal cancer: the
PRIME study. J Clin Oncol 2010;28:4697-705.

Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausova J, Macarulla T, et al.
Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves
survival in a phase III randomized trial in patients with metastatic colorectal
cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 2012;
30:3499-506.

Stein WD, Wilkerson J, Kim ST, Huang X, Motzer R], Fojo AT, et al. Analyzing
the pivotal trial that compared sunitinib and IFN-alpha in renal cell carcinoma,
using a method that assesses tumor regression and growth. Clin Cancer Res 2012;
18:2374-81.

Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al.
New response evaluation criteria in solid tumours: revised RECIST guideline
(version 1.1). Eur ] Cancer 2009;45:228-47.

Stein WD, Figg WD, Dahut W, Stein AD, Hoshen MB, Price D, et al. Tumor
growth rates derived from data for patients in a clinical trial correlate strongly
with patient survival: a novel strategy for evaluation of clinical trial data.
Oncologist 2008;13:1046-54.

Stein WD, Yang ], Bates SE, Fojo T. Bevacizumab reduces the growth rate
constants of renal carcinomas: a novel algorithm suggests early discontinuation
of bevacizumab resulted in a lack of survival advantage. Oncologist 2008;13:
1055-62.

Stein WD, Huang H, Menefee M, Edgerly M, Kotz H, Dwyer A, et al. Other
paradigms: growth rate constants and tumor burden determined using com-
puted tomography data correlate strongly with the overall survival of patients
with renal cell carcinoma. Cancer J 2009;15:441-7.

Stein WD, Gulley JL, Schlom ], Madan RA, Dahut W, Figg WD, et al. Tumor
regression and growth rates determined in five intramural NCI prostate cancer
trials: the growth rate constant as an indicator of therapeutic efficacy.
Clin Cancer Res 2011;17:907-17.

Khan KH, Cunningham D, Werner B, Vlachogiannis G, Spiteri I, Heide T, et al.
Longitudinal liquid biopsy and mathematical modeling of clonal evolution
forecast time to treatment failure in the PROSPECT-C phase II colorectal cancer
clinical trial. Cancer Discov 2018;8:1270-85.

Clin Cancer Res; 26(24) December 15, 2020

6473


http://clincancerres.aacrjournals.org/

Published OnlineFirst September 28, 2020; DOI: 10.1158/1078-0432.CCR-20-1493

Maitland et al.

43.

44.

45.

46.

Bruno R, Bottino D, de Alwis DP, Fojo AT, Guedj J, Liu C, et al. Progress and
opportunities to advance clinical cancer therapeutics using tumor dynamic
models. Clin Cancer Res 2020;26:1787-95.

Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al.
Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer.
N Engl ] Med 2013;369:1023-34.

Bertotti A, Papp E, Jones S, Adleff V, Anagnostou V, Lupo B, et al. The genomic
landscape of response to EGFR blockade in colorectal cancer. Nature 2015;526:
263-7.

Boeckx N, Koukakis R, Op de Beeck K, Rolfo C, Van Camp G, Siena S, et al.
Primary tumor sidedness has an impact on prognosis and treatment outcome in

6474 Clin Cancer Res; 26(24) December 15, 2020

47.

48.

metastatic colorectal cancer: results from two randomized first-line panitumu-
mab studies. Ann Oncol 2017;28:1862-8.

Tejpar S, Stintzing S, Ciardiello F, Tabernero J, Van Cutsem E, Beier
F, et al. Prognostic and predictive relevance of primary tumor location
in patients with RAS wild-type metastatic colorectal cancer: retrospec-
tive analyses of the CRYSTAL and FIRE-3 trials. JAMA Oncol 2017;3:
194-201.

Arnold D, Lueza B, Douillard JY, Peeters M, Lenz HJ, Venook A, et al.
Prognostic and predictive value of primary tumour side in patients with RAS
wild-type metastatic colorectal cancer treated with chemotherapy and EGFR
directed antibodies in six randomized trials. Ann Oncol 2017;28:1713-29.

CLINICAL CANCER RESEARCH

Downloaded from clincancerres.aacrjournals.org on February 14, 2021. © 2020 American Association for Cancer Research.


http://clincancerres.aacrjournals.org/

Published OnlineFirst September 28, 2020; DOI: 10.1158/1078-0432.CCR-20-1493

AAC_R American Association
for Cancer Research

Clinical Cancer Research

Enhanced Detection of Treatment Effects on Metastatic Colorectal
Cancer with Volumetric CT Measurements for Tumor Burden
Growth Rate Evaluation

Michael L. Maitland, Julia Wilkerson, Sanja Karovic, et al.

Clin Cancer Res 2020;26:6464-6474. Published OnlineFirst September 28, 2020.

Updated version

Supplementary
Material

Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-20-1493

Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2020/09/30/1078-0432.CCR-20-1493.DC1

Cited articles

This article cites 48 articles, 19 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/26/24/6464.full#ref-list-1

E-mail alerts

Reprints and
Subscriptions

Permissions

Sign up to receive free email-alerts related to this article or journal.

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at
pubs@aacr.org.

To request permission to re-use all or part of this article, use this link
http://clincancerres.aacrjournals.org/content/26/24/6464.

Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC)
Rightslink site.

Downloaded from clincancerres.aacrjournals.org on February 14, 2021. © 2020 American Association for Cancer Research.


http://clincancerres.aacrjournals.org/lookup/doi/10.1158/1078-0432.CCR-20-1493
http://clincancerres.aacrjournals.org/content/suppl/2020/09/30/1078-0432.CCR-20-1493.DC1
http://clincancerres.aacrjournals.org/content/26/24/6464.full#ref-list-1
http://clincancerres.aacrjournals.org/cgi/alerts
mailto:pubs@aacr.org
http://clincancerres.aacrjournals.org/content/26/24/6464
http://clincancerres.aacrjournals.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides true
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        18
        18
        18
        18
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 18
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [792.000 1224.000]
>> setpagedevice


